On the security of stepwise triangular systems
نویسندگان
چکیده
In 2003 and 2004, Kasahara and Sakai suggested the two schemes RSE(2)PKC and RSSE(2)PKC, respectively. Both are examples of public key schemes based on Multivariate Quadratic equations. In this article, we first introduce Step-wise Triangular Schemes (STS) as a new class of Multivariate Quadratic public key schemes. These schemes have m equations, n variables, L steps or layers, r the number of equations and new variables per step, and q the size of the underlying finite field. Then, we derive two very efficient cryptanalytic attacks. The first attack is an inversion attack which computes the message/signature for given ciphertext/message in O(mnLq + nLrq), the second is a structural attack which recovers an equivalent version of the secret key in O(mnLq + mn) operations. As the legitimate user also has a workload growing with qr to recover a message/compute a signature, qr has to be small for efficient schemes and the attacks presented in this article are therefore efficient. After developing our theory, we demonstrate that both RSE(2)PKC and RSSE(2)PKC are special instances of STS and hence, fall to the attacks developed in our article. In particular, we give the solution for the crypto challenge proposed by Kasahara and Sakai. Finally, we demonstrate that STS cannot be the basis for a secure Multivariate Quadratic public key scheme by discussing all possible variations and pointing out their vulnerabilities.
منابع مشابه
Alternative approaches to obtain t-norms and t-conorms on bounded lattices
Triangular norms in the study of probabilistic metric spaces as a special kind of associative functions defined on the unit interval. These functions have found applications in many areas since then. In this study, we present new methods for constructing triangular norms and triangular conorms on an arbitrary bounded lattice under some constraints. Also, we give some illustrative examples for t...
متن کاملTRIANGULAR FUZZY MATRICES
In this paper, some elementary operations on triangular fuzzynumbers (TFNs) are defined. We also define some operations on triangularfuzzy matrices (TFMs) such as trace and triangular fuzzy determinant(TFD). Using elementary operations, some important properties of TFMs arepresented. The concept of adjoints on TFM is discussed and some of theirproperties are. Some special types of TFMs (e.g. pu...
متن کاملOn the design and security of a lattice-based threshold secret sharing scheme
In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...
متن کاملDerived fuzzy importance of attributes based on the weakest triangular norm-based fuzzy arithmetic and applications to the hotel services
The correlation between the performance of attributes and the overallsatisfaction such as they are perceived by the customers is often used tocalculate the importance of attributes in the crisp case. Recently, the methodwas extended, based on the standard Zadeh extension principle, to the fuzzycase, taking into account the specificity of the human thinking. Thedifficulties of calculation are im...
متن کاملMultiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach
For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...
متن کاملAn interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 40 شماره
صفحات -
تاریخ انتشار 2006